电容器在电源中最重要的应用是在存储能量、浪涌电压保护、EMI抑制和控制电路等方面。我们可以通过图1了解到针对不同的应用领域,这些电介质技术彼此竞争或互为补充的关系。储能储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150000ΜF之间的铝电解电容器(如EPCOS公司的B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或
电容器在
电源中最重要的应用是在存储能量、浪涌电压保护、
EMI抑制和控制电路等方面。我们可以通过图1了解到针对不同的应用领域,这些电介质技术彼此竞争或互为补充的关系。
储能
储能型
电容器通过
整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为
40~450VDC、电容值在
220~
150000ΜF之间的铝电解电容器(如
EPCOS公司的 B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式, 对于
功率级超过10
KW的电源,通常采用体积较大的罐形螺旋端子电容器。
要选择合适的电容值,需查看其额定直流电压、允许的电压波纹和充/放电周期。但是,在选择用于该应用的电解电容器时,应当考虑以下参数。
典型电源中的电容器波纹
电流为各个频率上的波纹电流的组合。波纹电流的RMS(均方根)值决定了电容器的温升。
常见的一个错误是通过把各个频率上的波纹电流的平方值相加来计算RMS电流负载。实际上,必须考虑到随着波纹频率的增加,电容器的ESR下降。
正确的做法是根据波纹因子的频率图估算出高频(到
100HZ)时的波纹电流。采用估算的电流平方值来确定波纹电流。这才是真实的电流负载。
由于环境温度决定着负载条件下的电容器寿命,因此,那些声誉卓著的制造商们均精确定义了波纹电流负载、环境温度与概率寿命之间的关系。在实际工作条件下,利用波纹电流负载和环境温度来确定概率寿命,而将公布的概率寿命作为绝对值。
浪涌电压保护
开关频率很高的现代功率半导体器件易受潜在的损害性电压尖峰脉冲的影响。跨接在功率半导体器件两端的浪涌电压保护电容器(如EPCOS B32620-J或B32651..56)通过吸收电压脉冲限制了峰值电压,从而对半导体器件起到了保护作用,使得浪涌电压保护电容器成为功率元件库中的重要一员。
半导体器件的额定电压和电流值及其开关频率左右着浪涌电压保护电容器的选择。由于这些电容器承受着很陡的DV/
DT值,因此,对于这种应用而言,薄膜电容器是恰当之选。
在额定电压值高达2000VDC的条件下,典型的电容额定值在
470PF~47NF之间。对于大功率的半导体器件,如IGBT,电容值可高达2.2ΜF,电压在
1200VDC的范围内。